UTSA Department of Architecture

NAAB Required Undergraduate Courses for M.ARC 2 Admission

M.ARC 2

<table>
<thead>
<tr>
<th>NAAB Criteria</th>
<th>UTSA Bachelor of Architecture Program</th>
<th>Transfer /Equivalent Credit from Applicant’s Undergraduate Degree</th>
</tr>
</thead>
</table>
| **B5. Structural Systems:** Ability to demonstrate the basic principles of structural systems and their ability to withstand gravitational, seismic, and lateral forces, as well as the selection and application of the appropriate structural system. | ARC 2133 Principles of Architectural Structures. (3-0) 3 Credit Hours. An Introduction to the principles of architectural structures as related to architectural design. Includes consideration of spatial, structural, and aesthetic issues of building structural systems, and introduces structural behavior, forces and responses in structural systems. ARC 4283 Architectural Structures. (2-2) 3 Credit Hours. Prerequisites: ARC 2133, ARC 2156, and ARC 2166. Advanced study of architectural structures; considers the physical principles that govern classical statics and strength of materials. Graphical and mathematical design of structural systems. Consideration of the role of structural articulation in the design of buildings. | **Theory of Structures**
Structural Design I
Structural Design II
Structural Analysis |

| **B6. Environmental Systems:** Ability to demonstrate the principles of environmental systems’ design, how design criteria can vary by geographic region, and the tools used for performance assessment. This demonstration must include active and passive heating and cooling, solar geometry, daylighting, natural ventilation, indoor air quality, solar systems, lighting systems, and acoustics. | ARC 2233 Principles of Environmental Systems. (3-0) 3 Credit Hours. Introduction to the design of environmentally responsive buildings and the natural and artificial systems that support them. Includes consideration of topics such as, embodied energy, active and passive heating and cooling, indoor air quality, solar orientation, daylighting and artificial illumination, acoustics, and building services systems. | **Applied Mechanics**
Water Supply & Sanitation
Culinary |
<p>| B9. Building Service Systems: Understanding of the basic principles and appropriate application and performance of building service systems, including lighting, mechanical, plumbing, electrical, communication, vertical transportation, security, and fire protection systems | ARC 4183 Environmental Systems. (2-2) 3 Credit Hours. Advanced issues in the design of environmentally responsive buildings and the natural and artificial systems that support them, such as embodied energy, active and passive heating and cooling, indoor air quality, solar orientation, daylighting and artificial illumination, acoustics, and building services systems. Includes the use of appropriate performance assessment tools. | -ACoustics -AIR CONDITIONING AND AIR COOLING -SERVice LIGHTING AND ELECTRICAL |</p>
<table>
<thead>
<tr>
<th>NAAB Criteria</th>
<th>UTSA Bachelor of Architecture Program</th>
<th>Transfer /Equivalent Credit from Applicant’s Undergraduate Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5. Structural Systems: Ability to demonstrate the basic principles of structural systems and their ability to withstand gravitational, seismic, and lateral forces, as well as the selection and application of the appropriate structural system.</td>
<td>ARC 2133 Principles of Architectural Structures. (3-0) 3 Credit Hours. An introduction to the principles of architectural structures as related to architectural design. Includes consideration of spatial, structural, and aesthetic issues of building structural systems, and introduces structural behavior, forces and responses in structural systems. ARC 4283 Architectural Structures. (2-2) 3 Credit Hours. Prerequisites: ARC 2133, ARC 2156, and ARC 2166. Advanced study of architectural structures; considers the physical principles that govern classical statics and strength of materials. Graphical and mathematical design of structural systems. Consideration of the role of structural articulation in the design of buildings.</td>
<td>ARC 2002 : Structural Analysis I. ARC 3002 : Structural Analysis II. Structural Analysis III. Structural Analysis IV.</td>
</tr>
<tr>
<td>B6. Environmental Systems: Ability to demonstrate the principles of environmental systems’ design, how design criteria can vary by geographic region, and the tools used for performance assessment. This demonstration must include active and passive heating and cooling, solar geometry, daylighting, natural ventilation, indoor air quality, solar systems, lighting systems, and acoustics.</td>
<td>ARC 2233 Principles of Environmental Systems. (3-0) 3 Credit Hours. Introduction to the design of environmentally responsive buildings and the natural and artificial systems that support them. Includes consideration of topics such as, embodied energy, active and passive heating and cooling, indoor air quality, solar orientation, daylighting and artificial illumination, acoustics, and building services systems.</td>
<td>£5 2003 Environmental Conditioning I.</td>
</tr>
</tbody>
</table>
| **B9. Building Service Systems:** Understanding of the basic principles and appropriate application and performance of building service systems, including lighting, mechanical, plumbing, electrical, communication, vertical transportation, security, and fire protection systems | **ARC 4183 Environmental Systems.**
(2-2) 3 Credit Hours.
Advanced issues in the design of environmentally responsive buildings and the natural and artificial systems that support them, such as embodied energy, active and passive heating and cooling, indoor air quality, solar orientation, daylighting and artificial illumination, acoustics, and building services systems. Includes the use of appropriate performance assessment tools. | **ARC 2002 Environmental Conditioning II**
- Lighting Design (Electrical) |

Recommended:

[Signature]

Graduate Advisor of Record

4.17.2015

Approved:

[Signature]

Department Chair

11.24.15